Acceleration Harmonic Estimation for Hydraulic Servo Shaking Table Based on Multi-Innovation Stochastic Gradient Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auxiliary Model Based Multi-Innovation Stochastic Gradient Identification Algorithm for Periodically Non-Uniformly Sampled-Data Hammerstein Systems

Due to the lack of powerful model description methods, the identification of Hammerstein systems based on the non-uniform input-output dataset remains a challenging problem. This paper introduces a time-varying backward shift operator to describe periodically non-uniformly sampled-data Hammerstein systems, which can simplify the structure of the lifted models using the traditional lifting techn...

متن کامل

Key Generation Based on Acceleration Data of Shaking Processes

Hard restrictions in computing power and energy consumption favour symmetric key methods to encrypt the communication in wireless body area networks which in term impose questions on effective and user-friendly unobtrusive ways for key distribution. In this paper, we present a novel approach to establish a secure connection between two devices by shaking them together. Instead of distributing o...

متن کامل

Optimal Design and Hybrid Control for the Electro-Hydraulic Dual-Shaking Table System

Abstract: This paper is to develop an optimal electro-hydraulic dual-shaking table system with high waveform replication precision. The parameters of hydraulic cylinders, servo valves, hydraulic supply power and gravity balance system are designed and optimized in detail. To improve synchronization and tracking control precision, a hybrid control strategy is proposed. The cross-coupled control ...

متن کامل

Harmonic Components Estimation in Power System Using Bacterial Foraging Optimization Algorithm and Stochastic Gradient Algorithm with Variable Forgetting Factor

ABSTRACT: In this paper, a hybrid configuration algorithm called stochastic gradient method with variable forgetting factor (SGVFF) is proposed to better estimate unknown parameters in a power system such as amplitude and phase of harmonics using variable forgetting factor following the bacterial foraging optimization algorithm (BFO). It must be mentioned that harmonic estimation is a nonlinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2020

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2020/3063469